Improving Marginal Likelihood Estimation for Bayesian Phylogenetic Model Selection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-likelihood estimation for a marginal multivariate survival model.

In this paper, we propose a multivariate Plackett-Dale model for survival outcomes. A pseudo-likelihood method for the estimation of the parameters is proposed and these ideas are applied to two case studies. The modelling approach is similar in spirit but different from Parner's approach. The first study is in AIDS, where the overall survival time and different opportunistic infections in HIV-...

متن کامل

Marginal likelihood based model comparison in Fuzzy Bayesian Learning

In a recent paper [1] we introduced the Fuzzy Bayesian Learning (FBL) paradigm where expert opinions can be encoded in the form of fuzzy rule bases and the hyper-parameters of the fuzzy sets can be learned from data using a Bayesian approach. The present paper extends this work for selecting the most appropriate rule base among a set of competing alternatives, which best explains the data, by c...

متن کامل

Marginal set likelihood for semiparametric copula estimation

Quantitative studies in many fields involve the analysis of multivariate data of diverse types, including measurements that we may consider binary, ordinal and continuous. One approach to the analysis of such mixed data is to use a copula model, in which the associations among the variables are parameterized separately from their univariate marginal distributions. The purpose of this article is...

متن کامل

Posterior predictive Bayesian phylogenetic model selection.

We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand-Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-...

متن کامل

On the Use of Marginal Likelihood in Model Selection

SUMMARY Based on the marginal likelihood approach, we develop a model selection criterion, MIC, for regression models with the general variance structure. These include weighted regression models, regression models with ARMA errors, growth curve models, and spatial correlation models. We show that MIC is a consistent criterion. For regression models with either constant or non-constant variance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Systematic Biology

سال: 2010

ISSN: 1076-836X,1063-5157

DOI: 10.1093/sysbio/syq085